Скачать
презентацию
<<  Теорема о прямой,перпендикулярной к плоскости План построения  >>
В плоскости b через точку М проведем прямую с

Доказательство: В плоскости b через точку М проведем прямую с, перпендикулярную к прямой в. Прямая с и есть искомая прямая. В самом деле, она перпендикулярна к плоскости a, так как перпендикулярна к двум пересекающимся прямым этой плоскости(с ^ в , с ^ а, т.к. b ^ а). 2) Предположим, что через точку М проходит ещё одна прямая (обозначим её через с 1), перпендикулярная к плоскости a. Тогда с ll с 1, что невозможно, так как прямые с и с 1 пересекаются в точке М. Таким образом, через точку М проходит только одна прямая, перпендикулярная к плоскости a. 1) Проведем в плоскости a произвольную прямую а и рассмотрим плоскость b, проходящую через точку М и перпендикулярную к прямой а. Обозначим буквой в прямую, по которой пересекаются плоскости a и b.

Слайд 17 из презентации «Условие перпендикулярности прямой и плоскости». Размер архива с презентацией 415 КБ.

Скачать презентацию

Геометрия 10 класс

краткое содержание других презентаций

«Площадь поверхности конуса» - Измерьте длину образующей. Выполните вычисления. Длина дуги. Радиус основания конуса. Круговой сектор. Радиус основания. Как выразить величину угла. Площадь поверхности конуса. Формула площади полной поверхности конуса. Дано. Решение. Урок геометрии. Вывод формулы. Модель конуса. Конус. Как вычислить длину дуги окружности. Учебник. Найденное выражение. Вычислите площадь. Вычисление площади боковой поверхности модели.

«Параллелепипед» - Прямоугольный параллелепипед. Вывод формулы объёма прямоугольного параллелепипеда. Куб — это прямоугольный параллелепипед с равными измерениями. Основные элементы параллелепипеда. Произвольный параллелепипед. Параллелепипед. У параллелепипеда противолежащие грани параллельны и равны. В параллелепипед можно вписать тетраэдр. Развитие геометрии. Свойства диагоналей прямоугольного параллелепипеда. Так параллелепипед выглядит в развертке.

«Сечение призмы» - Плоскость сечения параллельна боковому ребру призмы. Построение. Определение сечения призмы. Построение сечений. Виды сечений. Сечение призмы. Самостоятельная работа. Диагональное сечение. Сечение призмы плоскостью. Сечения призмы. Определение сечения. Плоскость сечения. Построение методом «следов».

«Понятие пирамиды» - Основание пирамиды. Ступенчатые пирамиды. Пирамида в геометрии. Боковая грань. Египетские пирамиды. Сечения пирамиды плоскостями. Путешествие вокруг света. Пирамиды в химии. Маршрут путешествия. В основе пирамиды лежит мастаба. Чудеса Гизы. Пирамида в экономике. Грани пирамиды. Боковые ребра пирамиды. Контрольные вопросы. Многогранник. Боковое ребро. Смежные боковые грани. Правильная пирамида. След сечения.

««Параллельность плоскостей» 10 класс» - Плоскости А1В1С1 и А2В2С2 параллельны. Прямая A пересекает плоскости. Докажите, что плоскости МЕР и АВС параллельны. Признак параллельности двух плоскостей. Признак параллельности трех плоскостей. Пересекающиеся прямые m и n плоскости параллельны плоскости. Параллельность. Пересекающиеся в точке М прямые a и b. Концы отрезков АВ и СD лежат на параллельных плоскостях. Свойство параллельных плоскостей.

«Задачи на построение сечений» - Меню. Многогранник. Точка. Сечение тетраэдра. Середины ребер. Искомое сечение. Точки. Построение сечений. Постройте сечение куба плоскостью. Середины. Площадь сечения. Постройте сечение тетраэдра. Тетраэдр. Сечение параллелепипеда. Куб. Найдите точку пересечения прямой. Уровень. Данные точки. Сечение куба. Сечение параллелепипеда плоскостью.

Всего в теме «Геометрия 10 класс» 54 презентации
5klass.net > Геометрия 10 класс > Условие перпендикулярности прямой и плоскости > Слайд 17